21 research outputs found

    Chaotic exploration and learning of locomotor behaviours

    Get PDF
    Recent developments in the embodied approach to understanding the generation of adaptive behaviour, suggests that the design of adaptive neural circuits for rhythmic motor patterns should not be done in isolation from an appreciation, and indeed exploitation, of neural-body-environment interactions. Utilising spontaneous mutual entrainment between neural systems and physical bodies provides a useful passage to the regions of phase space which are naturally structured by the neuralbody- environmental interactions. A growing body of work has provided evidence that chaotic dynamics can be useful in allowing embodied systems to spontaneously explore potentially useful motor patterns. However, up until now there has been no general integrated neural system that allows goal-directed, online, realtime exploration and capture of motor patterns without recourse to external monitoring, evaluation or training methods. For the first time, we introduce such a system in the form of a fully dynamic neural system, exploiting intrinsic chaotic dynamics, for the exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modelled as a network of neural oscillators which are coupled only through physical embodiment, and goal directed exploration of coordinated motor patterns is achieved by a chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organised dynamics each of which is a candidate for a locomotion behaviour. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states using its intrinsic chaotic dynamics as a driving force and stabilises the system on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced which results in an increased diversity of motor outputs, thus achieving multi-scale exploration. A rhythmic pattern discovered by this process is memorised and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronisation method. The dynamical nature of the weak coupling through physical embodiment allows this adaptive weight learning to be easily integrated, thus forming a continuous exploration-learning system. Our result shows that the novel neuro-robotic system is able to create and learn a number of emergent locomotion behaviours for a wide range of body configurations and physical environment, and can re-adapt after sustaining damage. The implications and analyses of these results for investigating the generality and limitations of the proposed system are discussed

    The chaotic dynamics and multistability of two coupled Fitzhugh-Nagumo model neurons

    Get PDF
    In this short paper we present a detailed analysis of the dynamics of a system of two coupled Fitzhugh-Nagumo neuron equations with tonic descending command signals, suitable for modelling circuits underlying the generation of motor behaviours. We conduct a search of possible attractors and calculate dynamical quantities, such as the Largest Lyapunov Exponents (LLEs), at a fine resolution over the areas of parameter space where complex and chaotic dynamics are most likely, to build a more detailed picture of the dynamical regimes of the system, focusing on the most complex solutions. By building a precise LLE map, we identify a narrow region of parameter space of particular interest, rich with chaotic and multistable dynamics, and show that it is on the border of criticality. This allows us to draw conclusions about possible neural mechanisms underlying the generation of chaotic dynamics. We illustrate the detailed ecology of multiple attractors in the system by listing, characterising and grouping all the stable attractors in the parameter range of interest. This allows us to pinpoint the regions with complex multistability. The greater understanding thus provided is intended to help future studies on the roles of chaotic dynamics in biological motor control, and their application in robotics; particularly by giving a deeper insight into how input signals and control parameters shape the system’s dynamics which can be exploited in chaos driven adaptation

    Embodied neuromechanical chaos through homeostatic regulation

    Get PDF
    In this paper, we present detailed analyses of the dynamics of a number of embodied neuromechanical systems of a class that has been shown to efficiently exploit chaos in the development and learning of motor behaviors for bodies of arbitrary morphology. This class of systems has been successfully used in robotics, as well as to model biological systems. At the heart of these systems are neural central pattern generating (CPG) units connected to actuators which return proprioceptive information via an adaptive homeostatic mechanism. Detailed dynamical analyses of example systems, using high resolution largest Lyapunov exponent maps, demonstrate the existence of chaotic regimes within a particular region of parameter space, as well as the striking similarity of the maps for systems of varying size. Thanks to the homeostatic sensory mechanisms, any single CPG “views” the whole of the rest of the system as if it was another CPG in a two coupled system, allowing a scale invariant conceptualization of such embodied neuromechanical systems. The analysis reveals chaos at all levels of the systems; the entire brain-body-environment system exhibits chaotic dynamics which can be exploited to power an exploration of possible motor behaviors. The crucial influence of the adaptive homeostatic mechanisms on the system dynamics is examined in detail, revealing chaotic behavior characterized by mixed mode oscillations (MMOs). An analysis of the mechanism of the MMO concludes that they stems from dynamic Hopf bifurcation, where a number of slow variables act as “moving” bifurcation parameters for the remaining part of the system

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    Chaotic Search of Emergent Locomotion Patterns for a Bodily Coupled Robotic System

    No full text
    We study a novel deterministic online process for the exploration and capture of possible locomotion patterns of a simulated articulated robot with an arbitrary morphology in an unknown physical environment. The robot controller is modelled as a network of neural oscillators which are coupled indirectly through physical embodiment. Goal directed exploration of coordinated motor patterns is achieved by a chaotic search method using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple phase-locked states each of which is a candidate for driving efficient locomotion. By varying the chaoticity of the system as a function of evaluation signal, it is able to chaotically wander through various phase-locked states and stabilise on one of the states matching the given criteria. The nature of the weak coupling through physical embodiment ensures that only physically stable locomotion patterns emerge as coherent states, which implies the emergent pattern is well suited for open-loop control with little or no sensory inputs

    Technological aspects of rework

    Get PDF
    The paper deals with the technological aspects of rework. There are introduced some of these aspects as ambient temperature and ambient humidity, handling and storing devices and components, operators work, reflow soldering thermal profile, influence of flux. Technological aspects negatively influence reliability of soldering process, it is important to pay close attention to this phenomenon. They also have negative influence on repair yield

    SEM-ITDP ensemble network architecture.

    No full text
    <p>The STDP connections, which projects from the selected input neurons to each WTA circuit, together with the WTA circuits constitute the SEM ensemble. The ITDP connections have the same connectivity as the logical ITDP model. All of the ensemble, gating and final output networks use the same SEM circuit model.</p
    corecore